Skip to main content

Lark Document Transformation Strategy

Code Review

import { Injectable } from '@nestjs/common'
import { Document } from '@langchain/core/documents'
import {
DocumentTransformerStrategy,
IDocumentTransformerStrategy,
IntegrationPermission,
TDocumentTransformerConfig,
} from '@xpert-ai/plugin-sdk'
import { IconType, IKnowledgeDocument } from '@metad/contracts'
import { iconImage, LarkDocumentMetadata, LarkDocumentName, LarkName } from './types.js'
import { LarkClient } from './lark.client.js'

@Injectable()
@DocumentTransformerStrategy(LarkDocumentName)
export class LarkDocTransformerStrategy implements IDocumentTransformerStrategy<TDocumentTransformerConfig> {

readonly permissions = [
{
type: 'integration',
service: LarkName,
description: 'Access to Lark system integrations'
} as IntegrationPermission,
]

readonly meta = {
name: LarkDocumentName,
label: {
en_US: 'Lark Document',
zh_Hans: '飞书文档'
},
description: {
en_US: 'Load content from Lark documents',
zh_Hans: '加载飞书文档内容'
},
icon: {
type: 'image' as IconType,
value: iconImage,
color: '#14b8a6'
},
helpUrl: 'https://open.feishu.cn/document/server-docs/docs/docs-overview',
configSchema: {
type: 'object',
properties: {},
required: []
}
}

validateConfig(config: any): Promise<void> {
throw new Error('Method not implemented.')
}

async transformDocuments(
files: Partial<IKnowledgeDocument<LarkDocumentMetadata>>[],
config: TDocumentTransformerConfig
): Promise<Partial<IKnowledgeDocument<LarkDocumentMetadata>>[]> {
const integration = config?.permissions?.integration
if (!integration) {
throw new Error('Integration system is required')
}

console.log('LarkDocTransformerStrategy transformDocuments', files, config)

const client = new LarkClient(integration)

const results: Partial<IKnowledgeDocument<LarkDocumentMetadata>>[] = []
for await (const file of files) {
const content = await client.getDocumentContent(file.metadata.token)
results.push({
id: file.id,
chunks: [
new Document({
id: file.id,
pageContent: content,
metadata: {
chunkId: file.id,
source: LarkName,
sourceId: file.id
}
})
],
metadata: {
assets: []
} as LarkDocumentMetadata
})
}
return results
}
}

Logic Breakdown

1. Decorators and Dependency Injection

@Injectable()
@DocumentTransformerStrategy(LarkDocumentName)
  • @Injectable(): NestJS dependency injection decorator, marks this as an injectable service.
  • @DocumentTransformerStrategy(LarkDocumentName): Registers the class as a document transformation strategy with the unique name LarkDocumentName. 👉 This allows the system to automatically recognize and use this strategy.

2. Permission Definition

readonly permissions = [
{
type: 'integration',
service: LarkName,
description: 'Access to Lark system integrations'
} as IntegrationPermission,
]
  • The plugin requires Lark integration permission to call the API and fetch documents.
  • IntegrationPermission declares the dependent service, here it's LarkName (Lark).

3. Metadata (meta)

readonly meta = {
name: LarkDocumentName,
label: {
en_US: 'Lark Document',
zh_Hans: '飞书文档'
},
description: {
en_US: 'Load content from Lark documents',
zh_Hans: '加载飞书文档内容'
},
icon: {
type: 'image' as IconType,
value: iconImage,
color: '#14b8a6'
},
helpUrl: 'https://open.feishu.cn/document/server-docs/docs/docs-overview',
configSchema: { ... }
}
  • Plugin UI display info: name, icon, description, help documentation link.
  • configSchema: Defines configuration options (empty here, meaning no extra parameters required).

4. Configuration Validation

validateConfig(config: any): Promise<void> {
throw new Error('Method not implemented.')
}
  • Placeholder method for future configuration validation.
  • For example: check if document ID or token is provided.

5. Core Document Transformation Logic

async transformDocuments(
files: Partial<IKnowledgeDocument<LarkDocumentMetadata>>[],
config: TDocumentTransformerConfig
): Promise<Partial<IKnowledgeDocument<LarkDocumentMetadata>>[]> {
const integration = config?.permissions?.integration
if (!integration) {
throw new Error('Integration system is required')
}

const client = new LarkClient(integration)

const results: Partial<IKnowledgeDocument<LarkDocumentMetadata>>[] = []
for await (const file of files) {
const content = await client.getDocumentContent(file.metadata.token)
results.push({
id: file.id,
chunks: [
new Document({
id: file.id,
pageContent: content,
metadata: {
chunkId: file.id,
source: LarkName,
sourceId: file.id
}
})
],
metadata: {
assets: []
} as LarkDocumentMetadata
})
}
return results
}

Line-by-line explanation:

  1. Get Integration Info

    const integration = config?.permissions?.integration
    if (!integration) throw new Error('Integration system is required')
    • Retrieves Lark integration credentials from config.
    • Throws error if credentials are missing.
  2. Initialize Client

    const client = new LarkClient(integration)
    • Constructs LarkClient with credentials to access Lark API.
  3. Process Files in a Loop

    for await (const file of files) {
    const content = await client.getDocumentContent(file.metadata.token)
    }
    • Iterates over the list of documents to process.
    • Calls client.getDocumentContent to fetch document content by token.
  4. Build Transformed Document

    results.push({
    id: file.id,
    chunks: [
    new Document({
    id: file.id,
    pageContent: content,
    metadata: {
    chunkId: file.id,
    source: LarkName,
    sourceId: file.id
    }
    })
    ],
    metadata: {
    assets: []
    } as LarkDocumentMetadata
    })
    • Each Lark document is converted to an IKnowledgeDocument.
    • Main content is placed in the chunks array.
    • metadata stores extra info (currently only assets).

Overall Execution Flow

  1. Input: A batch of Lark document metadata (file ID / token).

  2. Permission Validation: Ensure Lark integration config is present.

  3. API Call: Use LarkClient to fetch the content of each document.

  4. Transform to Knowledge Base Format:

    • Wrap as IKnowledgeDocument
    • Content is chunked into Document (for later vectorization)
  5. Output: Returns an array of documents usable by Xpert AI Knowledge Base.


Core Value

  • Decoupling: The strategy class does not call the API directly, but relies on LarkClient.

  • Generality: All documents are ultimately converted to IKnowledgeDocument, seamlessly integrating with the platform's knowledge base.

  • Extensibility: In the future, you can add to transformDocuments:

    • Text cleaning (remove empty lines/formatting)
    • Content chunking
    • Metadata enhancement (author, tags, update time)