Lark Document Transformation Strategy
Code Review
import { Injectable } from '@nestjs/common'
import { Document } from '@langchain/core/documents'
import {
DocumentTransformerStrategy,
IDocumentTransformerStrategy,
IntegrationPermission,
TDocumentTransformerConfig,
} from '@xpert-ai/plugin-sdk'
import { IconType, IKnowledgeDocument } from '@metad/contracts'
import { iconImage, LarkDocumentMetadata, LarkDocumentName, LarkName } from './types.js'
import { LarkClient } from './lark.client.js'
@Injectable()
@DocumentTransformerStrategy(LarkDocumentName)
export class LarkDocTransformerStrategy implements IDocumentTransformerStrategy<TDocumentTransformerConfig> {
readonly permissions = [
{
type: 'integration',
service: LarkName,
description: 'Access to Lark system integrations'
} as IntegrationPermission,
]
readonly meta = {
name: LarkDocumentName,
label: {
en_US: 'Lark Document',
zh_Hans: '飞书文档'
},
description: {
en_US: 'Load content from Lark documents',
zh_Hans: '加载飞书文档内容'
},
icon: {
type: 'image' as IconType,
value: iconImage,
color: '#14b8a6'
},
helpUrl: 'https://open.feishu.cn/document/server-docs/docs/docs-overview',
configSchema: {
type: 'object',
properties: {},
required: []
}
}
validateConfig(config: any): Promise<void> {
throw new Error('Method not implemented.')
}
async transformDocuments(
files: Partial<IKnowledgeDocument<LarkDocumentMetadata>>[],
config: TDocumentTransformerConfig
): Promise<Partial<IKnowledgeDocument<LarkDocumentMetadata>>[]> {
const integration = config?.permissions?.integration
if (!integration) {
throw new Error('Integration system is required')
}
console.log('LarkDocTransformerStrategy transformDocuments', files, config)
const client = new LarkClient(integration)
const results: Partial<IKnowledgeDocument<LarkDocumentMetadata>>[] = []
for await (const file of files) {
const content = await client.getDocumentContent(file.metadata.token)
results.push({
id: file.id,
chunks: [
new Document({
id: file.id,
pageContent: content,
metadata: {
chunkId: file.id,
source: LarkName,
sourceId: file.id
}
})
],
metadata: {
assets: []
} as LarkDocumentMetadata
})
}
return results
}
}
Logic Breakdown
1. Decorators and Dependency Injection
@Injectable()
@DocumentTransformerStrategy(LarkDocumentName)
@Injectable()
: NestJS dependency injection decorator, marks this as an injectable service.@DocumentTransformerStrategy(LarkDocumentName)
: Registers the class as a document transformation strategy with the unique nameLarkDocumentName
. 👉 This allows the system to automatically recognize and use this strategy.
2. Permission Definition
readonly permissions = [
{
type: 'integration',
service: LarkName,
description: 'Access to Lark system integrations'
} as IntegrationPermission,
]
- The plugin requires Lark integration permission to call the API and fetch documents.
IntegrationPermission
declares the dependent service, here it'sLarkName
(Lark).
3. Metadata (meta)
readonly meta = {
name: LarkDocumentName,
label: {
en_US: 'Lark Document',
zh_Hans: '飞书文档'
},
description: {
en_US: 'Load content from Lark documents',
zh_Hans: '加载飞书文档内容'
},
icon: {
type: 'image' as IconType,
value: iconImage,
color: '#14b8a6'
},
helpUrl: 'https://open.feishu.cn/document/server-docs/docs/docs-overview',
configSchema: { ... }
}
- Plugin UI display info: name, icon, description, help documentation link.
configSchema
: Defines configuration options (empty here, meaning no extra parameters required).
4. Configuration Validation
validateConfig(config: any): Promise<void> {
throw new Error('Method not implemented.')
}
- Placeholder method for future configuration validation.
- For example: check if document ID or token is provided.
5. Core Document Transformation Logic
async transformDocuments(
files: Partial<IKnowledgeDocument<LarkDocumentMetadata>>[],
config: TDocumentTransformerConfig
): Promise<Partial<IKnowledgeDocument<LarkDocumentMetadata>>[]> {
const integration = config?.permissions?.integration
if (!integration) {
throw new Error('Integration system is required')
}
const client = new LarkClient(integration)
const results: Partial<IKnowledgeDocument<LarkDocumentMetadata>>[] = []
for await (const file of files) {
const content = await client.getDocumentContent(file.metadata.token)
results.push({
id: file.id,
chunks: [
new Document({
id: file.id,
pageContent: content,
metadata: {
chunkId: file.id,
source: LarkName,
sourceId: file.id
}
})
],
metadata: {
assets: []
} as LarkDocumentMetadata
})
}
return results
}
Line-by-line explanation:
Get Integration Info
const integration = config?.permissions?.integration
if (!integration) throw new Error('Integration system is required')- Retrieves Lark integration credentials from config.
- Throws error if credentials are missing.
Initialize Client
const client = new LarkClient(integration)
- Constructs
LarkClient
with credentials to access Lark API.
- Constructs
Process Files in a Loop
for await (const file of files) {
const content = await client.getDocumentContent(file.metadata.token)
}- Iterates over the list of documents to process.
- Calls
client.getDocumentContent
to fetch document content bytoken
.
Build Transformed Document
results.push({
id: file.id,
chunks: [
new Document({
id: file.id,
pageContent: content,
metadata: {
chunkId: file.id,
source: LarkName,
sourceId: file.id
}
})
],
metadata: {
assets: []
} as LarkDocumentMetadata
})- Each Lark document is converted to an
IKnowledgeDocument
. - Main content is placed in the
chunks
array. metadata
stores extra info (currently onlyassets
).
- Each Lark document is converted to an
Overall Execution Flow
Input: A batch of Lark document metadata (file ID / token).
Permission Validation: Ensure Lark integration config is present.
API Call: Use
LarkClient
to fetch the content of each document.Transform to Knowledge Base Format:
- Wrap as
IKnowledgeDocument
- Content is chunked into
Document
(for later vectorization)
- Wrap as
Output: Returns an array of documents usable by Xpert AI Knowledge Base.
Core Value
Decoupling: The strategy class does not call the API directly, but relies on
LarkClient
.Generality: All documents are ultimately converted to
IKnowledgeDocument
, seamlessly integrating with the platform's knowledge base.Extensibility: In the future, you can add to
transformDocuments
:- Text cleaning (remove empty lines/formatting)
- Content chunking
- Metadata enhancement (author, tags, update time)